

Px Compiler

User Guide and Reference

ddcToolbox.com

Rev. September 10, 2021

i

Table of Contents

Overview ... 3

User Interface ... 5

Compiler View ... 5

Device Table View ... 7

Device Table - Settings Sidebar View .. 9

Import Dialog .. 10

Export Dialog ... 11

Initial Setup ... 12

Graphics Development ... 13

Syntax and Commands .. 16

Syntax .. 16

Commands .. 16

Nested Display .. 16

Nested (Device) Template ... 16

Device Instance Assignment (used with Nested Templates) .. 17

Variable Injection .. 17

Dynamic Variable Assignment .. 18

Dynamic Pushbutton Assignment (used with Nested Device Templates) .. 18

Display Descriptor Reference .. 19

Changelog ... 20

v1.4.20 ... 20

Added .. 20

v1.4.19 ... 20

Added .. 20

Changed .. 20

Fixed .. 20

v1.4.18 ... 20

Added .. 20

v1.4.17 ... 20

ii

Added .. 20

Changed .. 20

vX.X.X ... 21

Added .. 21

Changed .. 21

Deprecated .. 21

Removed ... 21

Fixed .. 21

Security ... 21

3 of 21

Overview

Px Compiler is a utility program that adds enhanced graphic editing features to Alerton’s Compass

software. One of the main features allows for embedding graphic displays within another graphic

display. This simple, yet powerful, feature makes it possible to “nest” a display (or template) onto many

other displays without relying on copy/paste. This makes the process of creating many displays (that

share common elements) extremely fast and consistent. Changes to a nested display will also apply the

changes to all graphics that contain the nested display. This feature when combined with other features

of Px Compiler are extremely useful when creating the following:

• Equipment “quick view” graphics

• “floor plan” graphics

• Navigation links (shared across many displays)

• headers (shared across many displays)

• footers (shared across many displays)

• “floor plan” overview maps (shared across multiple displays)

Variable injection is another powerful feature of Px Compiler that aids in the development of graphics.

Data contained in the Compass Device Manager table can now be used directly in a graphic (at compile

time, aka when the display is saved). Px Compiler also allows for viewing and editing the Compass Device

Manager table directly. The Px Compiler has an import and an export feature which make adding new

devices, bulk editing, sorting, and filtering device data simple.

Figure 1 - Flow of data from Device Manager to Graphics

4 of 21

How it works…

Px Compiler works by running in the background on a PC that is also running Alerton Compass software.

When the graphics (displays and templates) are edited and saved in Compass, Px Compiler will

automatically “go to work” on them. Px Compiler will make the necessary changes based on special

commands that may be present in the graphics file. All graphical work is done completely in the

Compass IDE which makes it easy to use Px Compiler. Aside from telling Px Compiler which Alerton

Rep/Job to monitor for changes, the user does not need to interact with Px Compiler in any way to

utilize most graphical features. The Graphics Development section explains, at a high level, how to use

this program to develop graphics. Refer to the Syntax and Commands section which lists all available

commands and explains how to build expressions within Compass graphics.

5 of 21

User Interface

Refer to Figure 2 & Figure 3 for an overview and explanation of each element of the user interface. Most

elements, when hovered over, will display a tooltip containing supplemental information.

Figure 2 - Compiler View

Compiler View

1. The Directory field contains the path to the current Compass REP/JOB “Displays” folder. On

initial startup, a default value will be shown.

2. The Status Bar is displayed only when Px Compiler is actively watching for changes to the

displays in the specified REP/JOB. Alternatively, a separate progress bar will be visible below the

Status Bar when Px Compiler is actively analyzing display files or compiling display files.

3. The Navigation Bar is used to switch between the different screens of the program.

1

6

4

5

3

2

6 of 21

4. This Activate/Deactivate button brings up a separate window where users can activate or

deactivate the software by entering a purchased activation code. This window will also display

the current activation code and expiration date (if applicable).

5. The action buttons perform various tasks:

a. Stop will stop the program from watching for display file changes. The Status Bar will

then disappear.

b. Open will open a folder dialog window which can be used to change the Compass

REP/JOB display folder and make the program start watching for display file changes.

The Status Bar will then appear.

c. Save/Convert will begin the conversion operation which converts the .px graphics to an

equivalent .DSPX or .DVTX file. This is used for “locking in” graphics so future edits to

graphics do not require the use of this software.

d. Compile All will parse through and compile all display and template files in the current

Compass project.

6. The Event Log displays all events/operations that Px Compiler has performed during the current

instance. This log is cleared when the program is closed.

7 of 21

Figure 3 - Device Table View

Device Table View

1. The “hamburger” menu button will open the settings sidebar. Within this sidebar are various

settings that users may adjust.

2. The Device Table contains every device within device table of the BACtalk.mdb or SQLEXPRESS

database of the current REP/JOB. All cells (except for devinst) are editable. Any edited, and un-

saved, cell will turn green to indicate that it has not yet been saved to the database. All columns

can be filtered, sorted, resized, pinned, reordered, hidden, and reset.

3. The Save button is visible only when there are edited, and un-saved, cells in the Device Table.

Clicking this button will save all changes to the database. All green cells will then change to

white and the save button will disappear.

4. Data can be imported from Excel into the Device Manager table, or data from the Device

Manager table can be exported to Excel.

a. Import button will open the Import Settings dialog where the target Excel Workbook

and Worksheet can be selected. See below for more information on this dialog window.

2

4 1 3

8 of 21

b. Export button will open the Export Settings dialog where the target Excel Workbook and

Worksheet can be selected. See below for more information on this dialog window.

9 of 21

Figure 4 - Settings Sidebar

Device Table - Settings Sidebar View

1. The Show All Table Columns toggle will show/hide the extra fields in the Device Table. When

off, only the most common fields are visible.

2. The Track DB Changes toggle will enable/disable the Bactalk database tracking feature.

1

2

3

4

5

6

7

10 of 21

Figure 5 - Import/Export Dialog

Import Dialog

1. The Destination Workbook field contains the path to an existing Excel Workbook to import

from. Edit this field by clicking on the Folder icon to open a file dialog, then select the target

Workbook. OR copy/paste the path (including filename and extension) into the field.

2. The Excel Worksheet Name field is the name of the Excel Worksheet which will be imported.

The names must match exactly (case-sensitive). The default value of “Compass Device

Manager” can be changed by clicking in the field and typing a new value.

3. The Device Subset toggle determines whether all data will be imported from the Excel file, or

only a subset of data will be imported.

a. When Filtered Table is selected, only data for devices that are currently in the Device

Table will be imported. Devices that are not in this table, will be ignored during the

import. Filters currently applied to the Device Table will also be considered. I.e., A user

applies a filter to only show devices with a device instance that starts with “100”. After

Importing, only the devices shown in the Device Manager table will be affected.

b. When All Devices is selected, all devices will be imported. Devices that exist in the Excel

Workbook but not in the Device Manager will be added and placed at the top of the

table. Active table filters do not apply. This is useful for adding new devices to a project,

in bulk.

4. Click Import to begin the import operation. If an error occurs, a popup displaying the error

message will appear. Otherwise, all edited cells and new devices added will have green cells and

the Save button will appear. This allows a user to preview the changes prior to saving to the

2

4 5

1

3

2

4

1

3

5

11 of 21

database. To discard all edits without saving, simply navigate to the Compiler View, then back to

this view.

5. Click Cancel to cancel the import and exit the dialog window.

The format of the imported worksheet must be formatted properly, otherwise the import is likely

to fail. Use the Export feature to obtain a properly formatted worksheet.

Export Dialog

1. The Destination Workbook field contains the path to an existing Excel Workbook to export to.

Edit this field by clicking on the Folder icon to open a file dialog, then select the target

Workbook. OR copy/paste the path (including filename and extension) into the field.

2. The Excel Worksheet Name field is the name of the Excel Worksheet which will be imported.

This worksheet will be created, and a worksheet of this name MUST NOT already exist.

Otherwise, the export operation will fail. The default value of “Compass Device Manager” can

be changed by clicking in the field and typing a new value.

3. The Device Subset toggle determines whether all data will be exported to the Excel file, or only

a subset of data will be exported.

a. When Filtered Table is selected, only data for devices that are currently in the Device

Table will be exported. Devices that are not in this table, will be ignored during the

export. Filters currently applied to the Device Table will also be considered. I.e., A user

applies a filter to only show devices with a device instance that starts with “100”. After

exporting, only the devices shown in the Device Manager table will be exported to the

Excel file.

b. When All Devices is selected, all devices will be exported. Active table filters do not

apply. This is useful for exporting an entire projects device table.

4. Click Export to begin the export operation. If an error occurs, a popup displaying the error

message will appear.

5. Click Cancel to cancel the export and exit the dialog window.

12 of 21

Initial Setup

Getting started using Px Compiler is easy. First, download and install the program by running the

provided “.exe” installer file. After that, simply start the program and set Px Compilers path to the

desired Compass REP/JOB Display folder. The program will start watching for changes to your displays

and this program will automatically go to work as you build graphics directly in Compass.

The next time this program is opened, it will start “watching” the last folder that it was set to watch (not

available in “Evaluation Mode”.

The program will be in “Evaluation mode” until it has been activated with an activation code. However,

many of the features are still available to use in this mode.

While in “Evaluation Mode”, all displays that use features from this program will have

watermarks added. The

The display “Conversion” feature is disabled in “Evaluation Mode”.

13 of 21

Graphics Development

This section will provide guidance for using the features of this program to enhance the development of

graphics. Refer to the Syntax and Commands section for specific instructions on how to use these

features.

Figure 5 below demonstrates how to utilize templates to build a quick view graphic; while Figure 6

demonstrates how to utilize templates to build a floor plan graphic. The images on the left are what the

Compass graphic windows looks like. The images on the right are the output of those displays in a

browser (assume that Px Compiler is running on this machine and set to this REP/JOB).

Figure 6 - Template Driven Quick View

Figure 7 - Template Driven Floor Plan

The above graphics are using Nested Templates (Px Compiler Feature) to build graphics. A major benefit

of doing this is that copy/pasting elements from one graphic to many others is no longer needed.

Anything that is often duplicated across multiple graphics is a good candidate as a nested template.

Headers and navigation bars are good examples because they are often used on many displays. Using

14 of 21

those things as templates means that they are created only once and if a change needs to be made on a

template, then simply editing the template will update all other graphics that use that template.

Other features when

combined with

templates can make it

a powerful feature

for creating quick

views or floor plans.

Variable injection is

a feature that allows

a user to define

custom variables that

can be used on a

nested display,

therefore enabling a

nested display to be

reused while

containing unique

content for each

instance. Figures 8 and 9 show how to use variable injection to reuse nested templates. For instance, the

top image in both figures is one nested template that uses a variable “header”, but by assigning a

different value to the “header” variable (middle images) the output display will be different (bottom

images).

There are two types

of values that users

can assign to

variables: They are

static strings, or

dynamic strings.

Static strings are text

values enclosed in

quotes that a user

types out in the

Compass graphics

editor. Static strings

were used in both

Figures 8 and 9.

Dynamic strings are

not typed out by a

user, rather their

Figure 8 - Variable declaration and assignment.
Top = nested template, Middle = destination display, Bottom = Compiled Display.

Figure 9 - Variable declaration and assignment.
Top = nested template, Middle = destination display, Bottom = Compiled Display.

15 of 21

value is retrieved from the Bactalk database for a specific device property. This value is then assigned to

the variable which becomes visible on the output graphic. For more details on how to use this feature,

see Dynamic Variable Assignment in the Syntax and Commands section.

Figure 10 is an expression contained in a plain text object. This expression was used in Figure 6 to build a

quick view. This expression tells Px Compiler to do a few things: First, a few variables are assigned. They

are “name”, “location”, and “buttonDisplay”. These are dynamic string values, so they automatically

assigned by Px Compiler from the Device Manager database. Next, ”template=1” tells Px Compiler to

place all the objects from device template 1 (00000001.dvtx) in the current display and position

everything relative to the top-left corner of the plain text box. Last, ”deviceInstance=10005” sets the

device instance to use for this expression. Display objects on the nested template will be set to this

device instance (if “use current device” is checked), and dynamic string values will use properties of this

device instance.

#buttonDisplay is a special variable that is used to set pushbutton objects on the template to a

specific number. This number can be a static value or dynamic value.

Figure 10 - Expression & Syntax

After saving the display in Compass, Px Compiler will automatically compile the output display. Figure 11

shows what the output of the expression will look like after compilation.

Figure 11 - Compiled Output from Figure 7

Placing the device instance last in the expression above was intentional. The “Repeat item” feature of

Compass can be used to add more expressions on the page. Placing the device instance last allows the

repeat operation to increment the device instance automatically. The same process can be used when

creating floor plans.

The size and color of the plain-text box has no effect on the location of elements from a nested

template. However, it is helpful to size the box appropriately so that other elements are not

placed where there may be overlap with the nested template.

16 of 21

Syntax and Commands

This section will cover how to write expressions that Px Compiler can recognize. All commands and their

syntax will also be explained here.

Syntax

All Expressions must be enclosed in double curly brackets {{ … }}. Most expressions are written inside of

plain text box objects within Compass while some expressions are placed in the text field of a

pushbutton object within Compass.

Semicolons ; are used to combine multiple commands in one expression. Failure to use semicolons in

this scenario will cause the compilation to fail.

Commands

Nested Display

Nested Displays place a source display onto a destination graphic. The destination graphic can be
either a Compass display or device template.

The template is added to the destination graphic at the upper-left coordinate of the “plain text” box
that contains the expression. The location of all elements in the template are relative to this point as
well. Multiple templates can be used on a single destination graphic.

Only use this command once per expression, aka once per plain text box.

{{ display= 4 }}

This expression will place the contents of display 00000004.dspx in the destination graphic.

Leading zeroes are not required.

Nested (Device) Template

Nested Templates place a source device template onto a destination graphic. The destination
graphic can be either a Compass display or device template.

The template is added to the destination graphic at the upper-left coordinate of the “plain text” box
that contains the expression. The location of all elements in the template are relative to this point as
well. Multiple templates can be used on a single graphic.

Only use this command once per expression, aka once per plain text box.

17 of 21

Typically, this command will need to be used with the Device Instance Assignment command for the
desired effects.

{{ template= 4 }}

This expression will place the contents of display 00000004.dvtx in the destination graphic.

Leading zeroes are not required.

Device Instance Assignment (used with Nested Templates)

When using nested templates, usually it is necessary to also supply a device instance to the device
template. All displays object in the Compass template that are set to “ use current device” will use
the supplied device instance. This command can only be used with nested device templates.

Only use this command once per expression, aka once per plain text box.

If placed last in the expression, the Compass repeat item feature can be used to auto-increment the
number.

Separate all commands with a semicolon

{{ template= 4; deviceInstance= 10005 }}

This expression will place the contents of display 00000004.dvtx in the destination graphic and

set the appropriate objects to target device instance 10005.

Variable Injection

Variables allow for adding custom text to nested graphics. Custom variables are defined in an
expression within the destination graphic and are consumed on a nested graphic.

All variables must be preceded by a pound symbol, #, when declared. DO NOT use the pound symbol
on the nested graphic.

Variables names must only consist of the characters: a-z, A-Z.

Multiple variables may be defined in an expression, but each must be separated by a semicolon.

Plain text values can be assigned to variables by using quotes. Special keywords do not require
quotes. See Dynamic Variable Assignment for more details.

{{ #NewVariable=”Some Text”; template= 4; deviceInstance= 10005 }}

The variable NewVariable is defined and assigned the value of Some Text. All instances of the

NewVariable in the nested template will be replaced with the value Some Text.

To consume variables on the template, create an expression containing that variable inside of the
text field of objects. The pound symbol MUST be omitted.

Variables may also be placed in the text field of a Compass pushbutton object OR a Compass plain
text object.

18 of 21

Variable = {{ NewVariable }}

Continuing from the previous example; When the above is entered into a plain text box, the
output graphic will display Variable = Some Text. The text that is outside of the double curly
brackets is not affected.

Dynamic Variable Assignment

Variables may also be assigned the value of any properties that are present in the tblDevices table
of the project Database (See BACtalk.mdb or SQLEXPRESS for all available properties). This is
accomplished by entering the name of the desired field, exactly.

Do not include quotes when using these special properties.

A device instance must be assigned in the same expression for this to work.

{{ #NewVariable=objname; template= 4; deviceInstance= 10005 }}

The value of objname for device instance 10005 is assigned to variable NewVariable. In this

example. The value of objname is UH-5.

Some of the common properties from the database that may be used are: DDC_app,
devdescription, objname, devlocation.

The values will only be assigned when the graphic is saved in Compass. If the value of the property is
changed in the database, the graphic must be saved again to get the updated value.

Dynamic Pushbutton Assignment (used with Nested Device Templates)

When using nested templates with pushbutton objects, specifying the target display of the button is
possible. This is helpful when using a single nested template for multiple devices that have unique
equipment displays.

#buttonDisplay is a reserved variable that can be assigned a number OR use a Dynamic Variable
Assignment.

{{ #buttonDisplay=1000; template= 4; deviceInstance= 10005 }}

This will set the applicable pushbutton objects to target display number 00001000.

{{ #buttonDisplay=objname; template= 4; deviceInstance= 10005 }}

This will set the applicable pushbutton objects to target display number 00002000. In this

scenario, the number value is assigned the value of the objname property from the database for

device instance 10005.

{{ buttonDisplay }}

19 of 21

Placing the above command in the text field of a pushbutton object on the nested template will

direct Px Compiler to reassign the buttons display number. Text outside of the double curly

bracket will not be affected, and the expression text will not be visible on the output graphic.

{{ buttonDisplay, NewVariable }}

This command may be combined with another variable, but they must be separated by a

semicolon. The expression text will be replaced with the value of the variable NewVariable.

Display Descriptor Reference

There are two keywords that can be added to a display or template which will automatically add the
Compass display descriptor to the output graphic.

These commands can only be placed in a plain text object.

The display descriptor must be set from the Compass program window. No text will appear if the
descriptor is blank.

{{ descriptor }}

This will place the value of the descriptor in the plain text object. Any text outside of the double

curly brackets will not be affected. The descriptor of the graphic that this command resides on

will be used.

{{ destDescriptor }}

This will place the value of the descriptor in the plain text object. Any text outside of the double

curly brackets will not be affected. The descriptor of the destination graphic will be used. I.e.,

This command, when used on a nested template, will be replaced with the descriptor of the

destination graphic (NOT the descriptor of the nested template).

20 of 21

Changelog

v1.4.20

Added

• Application version check and auto-updating.

v1.4.19

Added

• Loading spinner for export operation.

• Styling to Device Table header tooltips

Changed

• Added restrictions to evaluation mode.

• Windows icon to improve legibility.

Fixed

• BACnet interface settings would not save when navigating around application

screens.

• Device Table would load from database twice on initialization.

• Improved variable injection support.

v1.4.18

Added

• New button which re-compiles all displays in current directory.

• New feature: “Track DB Changes” automatically re-compiles specific displays when
the database changes.

v1.4.17

Added

• New Feature (still in Beta). BACnet interface added which allows the user to
read/write BACnet values to devices from within the Device Table. The following
properties are supported: objname, devdescription.

• Added “destDescriptor” command.

Changed

• Moved the Device Table toggle buttons to a side navigation bar.

21 of 21

vX.X.X

Added

Changed

Deprecated

Removed

Fixed

Security

